
 1

Data Structures and Algorithm Design

Assignment 1: Part 1

Contact book

Nowadays, a contact book in the 21st century is easily accessible and well organized,

thanks to software developments. People searched through thick books to find a contact

in the past; however, it did not take long to find the right contact. There are techniques to

search for a contact quickly. People open the book in the middle since a contact book is

sorted in alphabetic order. If the initial letter is on the left side, they apply the same method

on the left side again until they narrow it so far down to find the contact finally. Many

algorithms have a relationship with real-life, like the mentioned example. (Fitrian et al.,

2019: 2)

The contact book application should include a name, contact (phone) number, email

address, and birthday for each contact. Also, the contact book should be sorted

alphabetically like an actual contact book. In addition, the application should have the

following features:

1. Add: Creation of a new contact

2. Show: Reading a contact

3. Edit: Update a created contact for any modification

4. Remove: Deleting a created contact

A list is the best suitable data structure for building a contact book since a list is a linear

data structure and includes functions such as traversal, insertion, deletion, searching and

 2

sorting. When it comes to linear structure, the data are sorted and stored one after the

other in the memory. Furthermore, the types of the elements can be different and combine

integers, strings, and floats. An array, by contrast, can only regularly store elements of the

same type (Muzumdar, 2022; TechDiferrences, 2022). The following figure demonstrates

an example of the desired contact list:

Figure 1: Contact list (own representation based on Muzumdar, 2022)

The contact list is arranged by name (head), phone number, email address, and birthday

(tail).

In case of adding a new contact, the user needs to create a new list by applying the correct

input. The user will be asked to enter the information to keep the order step by step. Due

to the complexity, the information input should be only done in strings. The following

pseudocode represents the insertion of the asked information for adding a contact to a

list. In addition, the global list “contacts” constitutes the list for every contact that the user

adds.

 3

contacts = empty list

DEF addContact():

 contactList = empty list

 inputName = INPUT (Enter Given name and Surname)

 inputPhone = INPUT (Enter phone number)

 inputEmail = INPUT (Enter email address)

 inputBirthday = INPUT (Enter birthday)

 APPEND inputName to contactList

 APPEND inputPhone to contactList

 APPEND inputEmail to contactList

 APPEND inputBirthday to contactList

 APPEND contactList to contacts

 Declare contacts

END

Since the list “contacts” begin for each contact with the name, the list can quickly be sorted

alphabetically by the name with the method sort.

After calling the function, the list “contacts” should include the information of the first

contact. For the next feature, reading the contact, the user should be able to search for

the contact by entering any information about the desired contact.

DEF searchContact(contacts, searchInfo):

 Assign the value of searchInfo in lowercase

 SET i to 0

 searchList = empty list

 WHILE i < the length of contacts:

 Assign the i entry of contacts to searchList

 FOR each information in searchList:

 IF (information in lowercase == searchInfo):

 4

 Declare the i entry of contacts

 SET i to i + 1

 Declare “Contact does not exist’”

END

To edit or delete a contact, the user needs firstly find the desired contact with the search

contact function. If the contact exists, the user can choose to change the information of

one of the four categories or to delete the entire contact. By any further wrong inputs, the

user can enter the contact again and repeat the process.

DEF editContact(contacts):

 editList = searchContact(contacts, searchInfo = INPUT(Enter Name or Phone

 Number or Email Address or Birthday)

 IF (editList == “Contact does not exist”):

 Declare “Contact does not exist”

 Else:

 Assign the INDEX of contacts with the search value editList to indexNumber

 editInfo = INPUT (Enter the number for editing the information of the

 following categories, enter '4' for deleting the contact or '5' to exit the program:

0) Name

1) Phone Number

2) Email Address

3) Birthday

4) Delete Contact

5) Quit

 IF (editInfo == “4”):

 POP the INT value of indexNumber from contacts

 Declare contacts

 5

 IF (editInfo == “5”):

 Declare “No editing completed”

 TRY:

 POP the INT value of editInfo from editList

 INSERT the INT value of editInfo with the INPUT (Enter new information)

 Assign editList to the indexNumber entry of contacts

 Declare contacts

 EXCEPT:

 PRINT “Input wrong, try again”

 Declare function editContact(contacts)

END

For the test plan, checkpoints will be set under each function. Then, the program can be

tested with the help of calling the functions and the output keyword "PRINT". The following

pseudocode shows an example and the expected test results.

For adding two contacts to the list "contacts":

addContacts()

[Gianluca Cannone, 0176 84078863, gc22299@essex.ac.uk, 03.10.1995]

addContacts()

[Arron Fox, 0151 81743283, arron.fox@gmail.com, 04.12.1990]

PRINT contacts

Output:

[[Gianluca Cannone, 0176 84078863, gc22299@essex.ac.uk, 03.10.1995], [Arron Fox,

0151 81743283, arron.fox@gmail.com, 04.12.1990]]

SORT contacts

PRINT contacts

 6

Output:

[[Arron Fox, 0151 81743283, arron.fox@gmail.com, 04.12.1990], [Gianluca Cannone,

0176 84078863, gc22299@essex.ac.uk, 03.10.1995]]

PRINT searchList(contacts, INPUT (“Gianluca Cannone”)

Output:

[Gianluca Cannone, 0176 84078863, gc22299@essex.ac.uk, 03.10.1995]

The user wants to change the email address from the contact Gianluca Cannone to

gianluca.cannone@gmail.com:

PRINT editContacts(contacts):

The user will be asked to enter the following input:

searchList(contacts, INPUT (“Gianluca Cannone”)

editInfo = INPUT (“2”)

editList = INPUT (“gianluca.cannone@gmail.com”)

Output:

[Gianluca Cannone, 0176 84078863, gianluca.cannone@gmail.com, 03.10.1995]

PRINT contacts

Output:

[[Arron Fox, 0151 81743283, arron.fox@gmail.com, 04.12.1990], [Gianluca Cannone,

0176 84078863, gianluca.cannone@gmail.com, 03.10.1995]]

 7

References:

Fitrian, R., Taufik, I., Ramadhan, M., Mulyani, N., Hutahaean, J., Sitio, A., Sihotang, H.

(2019) Digital Dictionary Using Binary Search Algorithm. Journal of Physics: Conference

Series 1255(1): 1-7. DOI: https://doi.org/10.1088/1742-6596/1255/1/012058

Brookshear, J. G., Brylow, D. (2019), Computer Science: An Overview, Global Edition,

13th Edition, Pearson (Intl). Available from: vbk://9781292263441 [Accessed 28 April

2022].

Muzumdar, A. (2022) Operating Systems & Data Structures [Lecturecast].

LSC_PCOM7E MARCH 2022 Launching into Computer Science March 2022. University

of Essex Online.

TechDifferences (2022) Difference Between Linear and Non-linear Data Structure.

Available from: https://techdifferences.com/difference-between-linear-and-non-linear-

data-structure.html [Accessed 30 April 2022].

https://doi.org/10.1088/1742-6596/1255/1/012058
https://techdifferences.com/difference-between-linear-and-non-linear-data-structure.html
https://techdifferences.com/difference-between-linear-and-non-linear-data-structure.html

